High-Quality Reflections, Refractions, and Caustics in Augmented Reality
and their Contribution to Visual Coherence

P. Kan*

H. Kaufmannt

Institute of Software Technology and Interactive Systems,
Vienna University of Technology, Vienna, Austria

ABSTRACT

In this paper we present a novel high-quality rendering system for
Augmented Reality (AR). We study ray-tracing based rendering
techniques in AR with the goal of achieving real-time performance
and improving visual quality as well as visual coherence between
real and virtual objects in a final composited image. A number of
realistic and physically correct rendering effects are demonstrated,
that have not been presented in real-time AR environments before.
Examples are high-quality specular effects such as caustics, re-
fraction, reflection, together with a depth of field effect and anti-
aliasing.

We present a new GPU implementation of photon mapping and
its application for the calculation of caustics in environments where
real and virtual objects are combined. The composited image is
produced on-the-fly without the need of any preprocessing step. A
main contribution of our work is the achievement of interactive ren-
dering speed for high-quality ray-tracing algorithms in AR setups.

Finally we performed an evaluation to study how users perceive
visual quality and visual coherence with different realistic rendering
effects. The results of our user study show that in 40.1% cases users
mistakenly judged virtual objects as real ones. Moreover we show
that high-quality rendering positively affects the perceived visual
coherence.

Index Terms: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems —Aurtificial, augmented, and
virtual realities; 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism —Raytracing

1 INTRODUCTION

By definition Augmented Reality (AR) is the combination of real
and virtual to augment the real world in order to improve people’s
senses and skills. A requirement in most AR applications is visual
coherence between real and virtual objects. Visual coherence may
provide precise information about spatial location, radiometric and
geometric properties of inserted virtual objects. Furthermore real-
istic appearance of virtual objects and their proper interaction with
the real world is of high interest in many applications areas e.g. en-
tertainment (movie production, previsualisation), design, medicine
(therapy, rehabilitation, surgery), education and others.

The majority of AR applications use simple rendering and shad-
ing algorithms, thus achieving only a low level of visual coherence.
A simplified illumination model and the lack of lighting interchange
between virtual objects and the real world together with the pin-
hole camera model are insufficient for achieving effects created by a
physical lens. They cause a low degree of visual coherence between
virtual and real objects. A complete light interaction simulation
between real and virtual objects involves global illumination (GI)

*e-mail: peterkan@peterkan.com
fe-mail: kaufmann@ims.tuwien.ac.at

Figure 1: Refractive virtual glass surrounded by the real environment.
Note the correct refraction of the hand in the glass obtained by the
reprojection method.

calculation. Calculation of accurate GI in AR in interactive frame
rates is a challenging task. Especially high-quality global light sim-
ulation on specular surfaces in interactive AR environments is a
difficult problem.

In this paper we propose a novel high-quality rendering system
for AR using ray-tracing based algorithms which achieves a high
degree of visual realism and visual coherence. For proper simula-
tion of light interreflections between real and virtual worlds we use
a new interactive GPU implementation of photon mapping [15].
We use a physically-based camera model to achieve coherent vi-
sual effects like those caused by a real camera. One-pass differ-
ential rendering [16] is utilized to increase rendering performance.
We demonstrate high-quality interactive rendering of various real-
istic effects such as correct light reflection, refraction, anti-aliasing,
depth of field (DoF) and caustics. We have implemented realistic
glass material rendering (Figure 1) by ray-tracing using Fresnel re-
flection [24] and proper refraction. To overcome the problem of
getting incoming radiance of real light refracted in glass objects,
we use a camera reprojection method similar to [9] thus finding the
correct radiance in the camera image. In order to specify the cor-
rect light source positions we incorporate a light source estimation
algorithm in our system. In this algorithm the environment map is
processed by thresholding and blob detection and the positions of
the light sources are found. Furthermore the real environment map
is used to render proper reflection/refraction of the real world in
specular virtual objects. In our implementation we exploit the par-
allel nature of ray-tracing algorithms and the massive parallel power
of modern GPUs. Therefore our solution provides from interactive
to real-time frame rates depending on the required quality.

In order to study the impact of ray-tracing based rendering on
visual coherence in AR, we evaluated users’ perception of our ren-



dering solution using quantitative methods. Visual coherence was
evaluated in two different scenarios. Furthermore we asked partic-
ipants to state which objects in the shown video are real and which
are virtual, in order to see if the visual quality and coherence is good
enough to make people believe that AR content is real. The results
of the user study show that our system is able to achieve a very high
degree of visual coherence between real and virtual objects.
The main contributions of our work are:

e New high-quality ray-tracing based rendering and composit-
ing system for interactive AR providing realistic rendering ef-
fects.

e Interactive photon mapping on the GPU for caustics render-
ing in augmented reality introducing global light transport be-
tween virtual and real objects.

e Real-time physically based rendering of specular reflection
and refraction in AR.

e User studies confirming the positive impact of ray-tracing
based rendering in AR to visual coherence.

The advantage of our method over previous work is that we can
very naturally render specular surfaces like glass or mirrors in high
quality. Moreover we propose a method for calculating caustics in
AR in interactive frame rates. Caustics can be created by reflecting
or refracting light on both real and virtual specular objects. Our
rendering and compositing method runs on-the-fly and no prepro-
cessing is needed while high rendering quality is achieved.

The rest of the paper is organized as follows. In section 2 previ-
ous research is discussed. Section 3 describes the main algorithms
that we developed in detail: simulation of ray-tracing based refrac-
tion and reflection, rendering of caustics by photon mapping and the
light source estimation technique. Moreover the used image repro-
jection technique and details about density estimation are discussed
there. Section 4 details the implementation of all proposed algo-
rithms. In section 5 the evaluation of the system is presented. User
study examining the influence of ray-tracing based rendering on the
human perception is described and results are discussed. Further-
more performance measurements are summarized.

2 RELATED WORK

In this section we give an overview of previous research that fo-
cused on high-quality rendering in AR, comparing it to our ap-
proach.

High-quality rendering in AR The majority of techniques that
aim to achieve high rendering quality in AR use rasterization-based
rendering. Usually they focus on special effects like material simu-
lation, self-shadowing simulation by ambient occlusion, or diffuse
global illumination and color bleeding. These approaches usually
do not simulate the light paths reflected from specular surfaces and
they use a high amount of approximation in order to achieve high
rendering speed.

Believable material simulation can increase the amount of real-
ism in AR. Pessoa et al. [23] created an approach for photorealistic
rendering in AR using rasterization. They proposed an extended
version of Lafortune Spatial BRDF model to properly simulate ma-
terial properties. Additionally they used the Irradiance Environ-
ment Mapping [29] in order to simulate global illumination coming
from the real world to virtual objects. Hover their solution can-
not simulate global illumination coming from virtual objects to real
ones. Furthermore a static environment image was used in their so-
lution and therefore no dynamic movement of reflected real objects
or lighting change could be simulated.

Diffuse global illumination in real-time augmented reality was
proposed by Knecht at al. [18] in their Differential Instant Radios-
ity approach. They extended Imperfect Shadow Maps [30] to work

in AR and used single-pass differential rendering to create the fi-
nal composite image. Their system is capable of simulating diffuse
global illumination including color bleeding between real and vir-
tual objects at interactive frame rates. However they do not sim-
ulate the specular light paths that create caustics and light reflec-
tion or refraction. Another approach simulating high-quality dif-
fuse global illumination in AR was proposed by Grosch et al. [10].
Authors used Spherical Harmonics arranged in a grid to simulate
diffuse light transport. Moreover a correct near-field illumination
was calculated using the predefined model of surrounding geom-
etry (Room) in combination with a fish-eye lens camera. They
achieved real-time frame rates, however their solution does not sim-
ulate specular effects like caustics, refraction or reflection. An ap-
proximation of self-shadowing in AR calculated by Ambient Oc-
clusion was used by Franke and Jung [7]. They proposed a material
reconstruction technique using genetic algorithms. Multipass ren-
dering for AR was proposed by Agusanto et al. [1]. They used
irradiance environment maps to simulate global illumination com-
ing from real light to virtual objects. However their system did not
simulate light reflected from virtual objects affecting the real scene.

An advantage of our system in comparison to a rasterization-
based AR rendering systems is that we can calculate specular ef-
fects like reflection, refraction and caustics in high-quality, while
specular effects are very difficult to calculate in rasterization-based
rendering. We can also simulate the lighting change on real objects
caused by inserting virtual ones. Moreover ray-tracing rendering
systems can usually provide higher quality of the final result.

AR systems usually use the simulation of real lighting in ren-
dering. In some systems an image-based lighting approach is
used [18, 3] by sampling the environment map according to the
probability density function (pdf) similar to the intensities of the
pixels. Other approaches use light reconstruction to precisely spec-
ify the light positions and intensities. Frahm et al. [6] used an im-
age processing approach to obtain information about light sources.
They search for regions with high saturation in all channels and then
apply a segmentation. They approximate the real light by point light
sources and calculate their positions by processing two images from
two fish-eye lens cameras. High-quality light reconstruction from
a single-camera image is proposed in [17]. Authors used a user
guided algorithm, which processes the light sources marked by the
user to find the optimal positions, shapes and sizes of them.

A composited image of real and virtual objects in augmented re-
ality is usually created using differential rendering which was orig-
inally proposed by Fournier et al. [5] and later extended by De-
bevec [3]. This algorithm requires two solutions of lighting simu-
lation, doubling the rendering time. To overcome this problem we
use our one-pass differential rendering algorithm proposed in [16].

A good overview of reflection and refraction simulation in AR
can be found in [26]. The author describes rasterization-based tech-
niques. However ray-tracing can provide physically-based simula-
tion of refractive and reflective material while rasterization based
techniques provide solutions at lower quality.

Ray-tracing in AR Physically-based algorithms developed in
computer graphics often use ray-tracing to achieve accurate light
transport calculation. However the problem of high-quality ray-
tracing based rendering systems is performance. A good image can
take time to render. Offline rendering systems for mixing virtual ob-
jects to simulate full global illumination were proposed in [17, 3].
Important research for specular effects simulation in AR was done
by Grosch [9]. He proposed Differential Photon Mapping in or-
der to simulate caustics and shadows more efficiently. Moreover
he proposed an image reprojection technique to obtain real radi-
ance coming through refractive surfaces. His system achieves high
rendering quality, however it runs offline and not in real-time. Ad-
vantage of our method over differential photon mapping is that we
achieve interactive to real-time frame rates and our system is capa-



ble to simulate more visual features, for example physically-based
depth of field.

The use of the ray-tracing in AR applications was examined by
Scheer et al. [31] who used it for realistic rendering and Pomi et
al. [27] who studied the insertion of the real video of characters into
a virtual environment in TV Studio applications. The disadvantage
of Pomi’s implementation was the requirement of a PC cluster to
achieve interactive frame rates.

Photon mapping Photon mapping proposed by Jensen [15] is
an effective two pass algorithm for the calculation of global illu-
mination. It traces photons from the light source into the scene.
When a photon hits a surface it is either reflected, refracted, or ab-
sorbed. The photons are stored at their hit positions and later sorted
into a Kd-tree data structure called photon map. In the second step
the radiance information is reconstructed from the photon map in
the points visible from the camera. The Kd-tree is traversed in or-
der to find the photons contributing to a specified location. Photon
mapping can simulate full global illumination and it is especially
efficient in specular global illumination effects like caustics, which
are difficult for other GI algorithms.

Since photon mapping was invented many improvements have
been published. Several solutions for fast photon mapping were
proposed. An interactive solution was created by Fabianowski
and Dingliana [4], who generated the footprints of all photon hits
and stored them in the improved BVH optimized for fast search.
A very efficient photon mapping implementation combining GPU
rasterization and CPU ray-tracing was proposed by McGuire and
Luebke [20]. They used photon volumes rasterization in order
to avoid costly KNN queries. An efficient GPU-based approach
for full global illumination calculation was proposed by Wang et
al. [39]. The authors used the GPU Kd-tree construction proposed
by Zhou [40] and they implemented the whole global illumination
calculation only on the GPU, achieving interactive frame rates. Pur-
cell et al. [28] proposed another GPU implementation of photon
mapping using shader programs. A grid-based photon map was
used in their approach. Gupte [12] proposed an interactive photon
mapping implementation using the OptiX ray-tracing engine that
we use as well. The main difference compared to our method is
that they used a Spatial Hashing Method instead of the Kd-tree for
storing and searching photons. An interactive photon mapping im-
plementation running on multiple computers is shown in [11].

A special case of the photon mapping algorithm reformulation is
shown in splatting approaches. Usually the energy carried by pho-
tons is splat to the specified buffer and the photon’s contribution
and weight are added to already stored values in the area of contri-
bution. A scalable photon splatting algorithm was proposed in [19]
and photon ray splatting was proposed in [13].

Another kind of algorithmic improvement can be achieved by in-
creasing the quality of the produced result. A high-quality photon
mapping improvement was proposed by Spencer and Jones [35].
The authors focused mainly on the density estimation part of caus-
tics rendering. They proposed the novel method of relaxing the
initial distribution into one with a blue noise spectral signature.
This improvement enables the use of low bandwidth kernels and
increases efficiency of the rendering. The same authors also pro-
posed Hierarchical Photon Mapping [34] to increase the quality of
the final gathering.

3 HIGH QUALITY RENDERING SYSTEM FOR AR

In order to solve the problem of visual coherence between virtual
and real objects, a high-quality composition of the final image is
required. As shown in previous research, some realistic rendering
effects can be achieved using the rasterization pipeline on the GPU.
However it is still difficult to render high-quality specular effects
like realistic refraction, or caustics. The natural way of render-
ing more complex lighting effects is by using ray-tracing, which

is also used in an extended form for physically based rendering.
With the recent development of graphics hardware, ray-tracing be-
comes available for use in real-time applications. We propose the
adaptation and application of ray-tracing based algorithms into AR
in order to achieve visually appealing rendering results.

I

At b

M

Iy

_—

. S

Figure 2: The images obtained with differential rendering. I. is the
video camera image, I is the rendering of the real scene, I, is the
rendering of the mixed scene, M is the mask of virtual objects and
I; is the final result.

3.1 Ray-tracing

In our research we developed a new ray-tracing based rendering
system for AR scenarios. The core of our system is based on one-
pass differential rendering proposed in [16]. This technique is ca-
pable to render the final composited image in a single ray-tracing
step instead of running two separate ray-tracing solutions, which
are required in the standard differential rendering. In order to cal-
culate mixed and real radiances together four ray types are used: the
mixed radiance ray, the real radiance ray, the mixed shadow ray, and
the real shadow ray. The final image is then obtained by combining
the mixed and the real radiance results together in a ray-generation
program using the differential rendering equation [17]:

If=MOILy+(1-M)o [+ Iy — 1) (1)

where Iy is the final composited image, M stands for the aver-
age of the mask values of the rays shot through pixels. I, is the
rendered result of both real and virtual objects (mixed radiance),
while 7. is the rendering result of only real objects (real radiance).
The I. is the source image captured by the camera. Images used
in the differential rendering are shown in figure 2. In the one-pass
differential rendering I,- and I,,, are produced together.

Specular refraction and reflection Ray-tracing allows us to
properly simulate reflection and refraction on specular surfaces.
When a ray hits a reflective surface, the reflected ray direction is
calculated and a new ray is shot. When a ray hits a refractive sur-
face, both reflective and refractive rays are shot in order to properly
simulate the behaviour described by Fresnel equations [24]. We
use Schlick’s approximation of the Fresnel term described by the
following equation [32, 37]:

F(0)=F, + (1 —Fy)(1—cosf)® )

where 6 is the angle between the incident ray direction and the
surface normal, and F'; is the Fresnel term at perpendicular direc-
tion. The refractive ray direction is calculated according to Snell’s
law [24].



Figure 3: The resulting image produced by our AR rendering system.
The image was rendered shooting 9 rays per pixel to obtain a high-
quality result and to reduce aliasing artifacts. 1M photons were shot
in the photon shooting phase. The scene was rendered at 1fps, and
the rendering rate can achieve 15 fps by decreasing the number of
samples per pixel. There is one virtual glass monkey casting caustics
onto real objects and three real cubes in the image.

A problematic situation arises if a refracted ray hits a real sur-
face; because if the pure result of the rendering is used, informa-
tion about the refracted real world image is missing. We solve this
problem by using the image reprojection method similar to [9]. The
per-ray-data structure contains a flag wasSpecular. If the ray hits a
specular object, this flag is set to true. If diffuse real geometry is
hit by a mixed radiance ray, wasSpecular is checked. If the flag
is set to true the diffuse object was hit after the specular reflec-
tion/refraction. In this case we need to use the outgoing radiance
from the real object. In the video image obtained from the camera
the measured radiances per sensor pixel are stored. If we assume a
diffuse surface, the outgoing radiance is the same for every outgo-
ing direction. This fact allows us to use the radiance measured by
the camera as the outgoing radiance from the real diffuse surface to
the virtual refractive one. To obtain the correct measured radiance,
we reproject the hitpoint of the diffuse surface onto the image plane
and calculate the reprojected point position in image space coor-
dinates. We can then directly access the video image, which was
previously sent to GPU memory as a texture. If the hitpoint con-
tains glossy material, the radiance obtained by the reprojection is
still a good approximation of outgoing radiance. The reprojection
method is depicted in the figure 4 and the result of the refractive
material rendering is shown in the figures 1, and 3.

In order to properly display the reflected/refracted environment
in reflective specular objects, we use the hemispherical environ-
ment map obtained by the fish-eye camera. We approximate the sur-
rounding environment as a distant light coming from infinity when
reflected or refracted radiance is calculated. This assumption allows
us to access the environment texture according to the ray direction.
The environment texture is used as incoming radiance only in cases
when no real or virtual geometry has been hit. The texture is ac-
cessed directly in the miss program in the ray-tracing pipeline. We
use asynchronous image capturing independent from the rendering
thread and then update the image synchronously sending it as a tex-
ture to the GPU. Usually the rays pointing to the lower hemisphere
hit the surface of the scene, however it can happen that these rays
also miss any geometry. In this case we reuse the captured environ-
ment image of the upper hemisphere in the lower hemisphere. This
mirroring provides visually acceptable results of the radiance from
missed rays.

We use a physically-based camera model with finite-sized aper-
ture described in [16]. This model enables a high-quality depth of

image plane C

specular virtual object

H diffuse real object

Figure 4: The reprojection method for obtaining the outgoing radi-
ance from the diffuse real surface seen through the refractive virtual
object. Red rays are the rays sent from the camera to calculate the
radiance coming from a certain direction. Point C is the center of
projection. Point H is the hitpoint of the refracted ray with the diffuse
real surface. In order to retrieve the outgoing radiance from point H,
it is reprojected to the image plane to the point R.

field effect rendering in augmented reality. Another advantage of
using ray-tracing in augmented reality is that it can naturally sim-
ulate specular reflection also on real specular surfaces. Moreover
caustics can be reflected on those surfaces. We can see the reflec-
tion of the virtual object and its caustic reflected on the real mirror
surface in figure 5.

Anti-aliasing As we show in our evaluation, an important fea-
ture for visual realism in AR is the anti-aliasing of rendered objects.
It reduces artifacts caused by insufficient sampling density in high-
frequency parts of the image function, such as discontinuities on
the edges of virtual geometry. Aliasing artifacts can immediately
tell users that objects are virtual and therefore decrease the over-
all realism of the composited video. Distributed Ray-tracing [2]
offers a very elegant and natural method for anti-aliasing by just
supersampling the pixel area. Supersampling appears to be a suit-
able method since various random variables can be distributed over
multiple rays shot per pixel. For example it can be used to sample
the 2D domain of the pixel area together with 2D aperture to get the
DoF effect [16]. We use stratified jittered sampling [21] to achieve
a good distribution of samples.

In order to reduce aliasing we increase the number of rays shot
through each pixel. The final pixel color is then calculated by filter-
ing the calculated irradiance values obtained by shooting the rays.
In the compositing equation the reduction of aliasing on edges of
virtual objects can be achieved by filtering the mask value as well.
The mask can have a value between 0 and 1 and controls the blend-
ing of virtual and real objects. Moreover this blending strategy can
also be used with the DoF calculation, where blurred edges of out-
of-focus objects should be blended with the real background.

3.2 Caustics

Important visual features that increase the amount of visual realism
are caustics. They are created by light reflecting from specular sur-
faces to diffuse surfaces and then to the camera. In order to create
high-quality caustics, a photon mapping [15] algorithm is usually
used. We created a new GPU implementation of photon mapping



Figure 5: Caustics can be created by both virtual and real specular
objects. The green caustic was created by the virtual torus. Part
of it was created by the reflection of light from the real mirror. The
diffuse cube on which the caustic is drawn is also virtual. Note the
correct reflection of the generated caustic in the real mirror and also
the correct refraction in the torus.

using the OptiX ray-tracing engine [22] in order to achieve interac-
tive frame rates while keeping quality of the created caustics high
(Figure 6).

In our implementation we use a two-pass caustic generation al-
gorithm. In the first pass photons are emitted from the light source
into the scene. When photons hit a specular virtual surface they
are reflected or refracted in the direction of specular reflection or
refraction. If a photon hits a diffuse surface after reflection from a
specular object, it is recorded in an array of photons. This array is
later processed on the CPU, and a Kd-tree is created to allow faster
search for near-by photons. In the next step rays are traced from the
camera through the image plane to obtain the radiance incoming
from the scene. If a ray hits a surface in the scene, direct illumina-
tion is calculated and indirect caustic illumination is reconstructed
from the photon map (Figure 3).

In order to reconstruct indirect illumination at a certain point of
the scene from point samples that are stored in the photon map,
density estimation techniques are applied. There are three main ap-
proaches for density estimation: using a histogram, nearest neigh-
bour search or kernel density estimation [33, 36].

The K-nearest neighbour (KNN) search is the method that is of-
ten used in combination with photon maps. This technique reduces
the variance while keeping the bias low, however a high number of
K has to be used in order to obtain accurate results. Because of
many samples required, the KNN search is often a bottleneck of
radiance estimation from photon maps.

We use a kernel method to estimate illumination based on the
photon map, which allows us to perform a fast calculation of visu-
ally correct results. With kernel methods there is always a tradeoff
between bias and noise. A standard kernel method estimates the
probability density function (pdf) p(z) given N samples z; by the
equation [33, 36]:

N 1 N t— xX;
() = 7 2 K(—) 3)
=1

IC is a kernel function, h is the kernel bandwidth, d is the di-
mension of the domain of p, and ¢ is the position of estimation.
The accuracy of the kernel density estimation technique depends

on shape and bandwidth of a kernel. A kernel bandwidth selection
is an important step. If the kernel is too wide, more bias is pro-
duced and if it is too narrow, more variance can be observed. Ker-
nel estimation techniques with adaptive bandwidth were proposed
in previous work [36, 13]. They use a different bandwidth for every
sample according to its correctness, previously estimated density,
or the number of surrounding samples. Those techniques are often
iterative and require additional computational time to find a good
bandwidth.

We decided to use density estimation with a fixed kernel size.
This approach can potentionally produce bias and blur the discon-
tinuities in caustics. However, we solved this problem by selecting
a narrow kernel width. The variance is then reduced by increasing
the number of shot photons. Using a fixed kernel size with a nar-
row kernel enables very fast photon search in a Kd-tree as well as
fast density estimation. We use the Epanechnikov kernel, which is
a standard in density estimation [36]. A comparison of rendering
with and without caustics can be seen in figure 8.

Figure 6: Interactive caustic rendering. There is a virtual glass
sphere inserted into the real scene. The image was rendered at 10
fps.

A problem when emitting photons for caustics creation is the se-
lection of good directions in which a specular surface will be hit.
Jensen proposed a solution to rasterize specular objects to hemi-
sphere to obtain only directions where they are seen from the light
position [15]. Another approach is to approximate the geometry of
specular surfaces in a form of bounding volumes and to shoot rays
into the resulting primitives. In our system specular objects are ap-
proximated by bounding spheres for the purpose of photon shoot-
ing. In the scene loading phase all geometry is traversed with the
goal of finding caustic generators. If a caustic generator is found, a
bounding sphere, including all geometry of this object, is created.
In the photon shooting program the center and the radius of each
bounding sphere is used in the following way. First, one of the
caustic generators is randomly selected according to the projected
area of the bounding sphere. Then a disk perpendicular to the di-
rection from the center of the object to the light source is sampled
using stratified jittered sampling. A direction of photon is then cal-
culated as the direction from light source position to the sampled
point. By this sampling process some photons may miss a caustic
generator, however a high numbers of hitpoints are achieved.

3.3 Light Source Estimation

We are using a fish-eye camera to capture the light situation in the
real environment which allows us to estimate the positions and in-



tensities of the light source(s). Generally two different approaches
have been reported in literature. The first approach builds a cumula-
tive distribution function from the environment image, allowing for
random sampling from the probability distribution, which equals
the intensity of the incoming light from different directions on the
hemisphere [24].

The second approach is to apply image processing techniques to
the environment image and extract the positions of light sources.
This approach was used for example in [6].

We use image processing in our system, because random envi-
ronment light sampling requires a lot of samples and creates an
additional overhead. In our implementation first thresholding is ap-
plied to the captured environment image. In the next step we use
blob detection on the binary image to detect the biggest sources of
high incoming radiance. Connected component analysis provided
by OpenCV is utilized here and a contour tracing approach [8] is
used to find the contours of radiance blobs. The area of every blob
is calculated and the biggest blobs are selected as light sources.
The direction of incoming light is estimated according to the blob
center position in the environment image by reprojecting it to the
hemisphere. The exact position is then estimated with the user sup-
plied average room size constant and the light is positioned in that
distance in the reconstructed direction.

An arbitrary number of light sources can be extracted and bigger
area light sources can be sampled by more point light sources. We
usually use single point light source extraction in our experiments.
Point light sources produce sharper caustics than area light sources
do.

We run environment image capturing and light source estima-
tion asynchronously in a separate thread. Rendering speed is then
almost independent of the light source estimation and the last cal-
culated values are always read.

4 IMPLEMENTATION

We implemented our AR rendering system by using the OptiX ray-
tracing engine [22]. It is a powerful tool for running ray-tracing
based algorithms on modern parallel GPUs. To composite the final
image with the real video captured by the camera we use one-pass
differential rendering directly in the ray-generation program. The
photon shooting pass is also implemented using OptiX.

The main steps of our rendering and compositing method are de-
picted in figure 7. For every frame the images from video camera
and fish-eye camera are captured and sent to the GPU. The envi-
ronment image is processed and light source positions are found. A
visual marker is detected in the video image and position and ori-
entation of the camera are estimated. The first GPU step is photon
mapping. Photons are then processed on the CPU and a Kd-tree
is created. The final rendering step is GPU ray-tracing from the
camera position. All calculated results together with geometry and
materials of real and virtual scenes are used here. Density estima-
tion is performed on every diffuse surface hit in the ray-tracing step
to estimate the indirect illumination from the photon map. The re-
sult of the rendering is composited with the real video image and
directly displayed on the output device.

A computer with hexa-core CPU and a GeForce GTX 590 graph-
ics card was used for high-speed rendering. The upper hemisphere
of the scene’s illumination was captured with an environment cam-
era with a fish-eye lens. The captured image is used as a distant
source of real illumination for reflected/refracted light and as a
point light source for direct light calculation. This allows us to
reuse the environment map in every point of the scene. Using a
light source as a distant light in reflection and refraction completely
omits the spatial variation, however it is a very good approximation
for the directional variation in the scene. Therefore the environment
image is accessed with the ray direction in the miss program.

Our main camera to capture images and augment them with vir-
tual objects in real time is the Sony HVR-Z1E. This camera has a
lens that allows big aperture size and is therefore suitable for the
creation of a good depth of field effect by the optics of the real lens.
The camera parameters can then be used in the rendering system to
simulate physically correct depth of field for the rendering of virtual
objects.

INPUT

Real and Virtual 3D Scenes Data

— Video Image —

Environment Image m

CPU GPU
Light Source
Estimation
Photon
Mapping
—— L3
Kd-tree Build
Ray-Tracing
and One-Pass
L, Camgra R Compositing
Tracking
OUTPUT

Display

Figure 7: Overview of our rendering and compositing method. Ar-
rows indicate the data flow between different components.

To track the camera’s position and orientation, the ARToolkit-
Plus [38] marker-based tracking system was used. The actual cam-
era image is utilized both for the camera pose calculation and for
rendering. By reconstructing the camera position and orientation
directly out of the camera image that is also used for rendering, no
synchronization problems between tracking and rendering appear.
The orientation of the marker determines the rotation of the world
coordinate space and therefore determines where virtual objects are
positioned. The environment image retrieved by the fish-eye cam-
era is orientation-dependent, therefore the fish-eye camera has to
be aligned with the marker. Proper alignment ensures correct re-
flections and refractions on specular virtual surfaces.

Reconstructed geometry and materials of the real scene are re-
quired in order to properly create the composited image by differ-
ential rendering. We use a predefined model of the real scene for
this purpose.

5 EVALUATION AND RESULTS

In order to evaluate the impact of interactive ray-tracing on visual
coherence in AR we designed and performed a user study. Quanti-
tative methods were used to evaluate our hypotheses. Our hypothe-
ses were:



e Realistic features of ray-tracing based rendering have a pos-
itive impact on the user’s perception of visual coherence in
augmented reality.

e Every realistic rendering effect used in our system positively
influences the realistic appearance of the composited video.

5.1 Study Design

At the beginning of the user study we showed a single video of a
table containing diffuse real cubes, diffuse virtual cubes, a refrac-
tive virtual glass sphere and a reflective virtual ring. All effects that
we describe in this paper (simulation of refraction/reflection, anti-
aliasing, caustics, and DoF) were enabled in this video. We asked
users to rate how realistic the video was on a linear visual analogue
scale from -3 to 3. The value of -3 means that the video is not re-
alistic at all and the value of 3 means that the video is completely
realistic. Moreover we asked people to indicate which objects were
real and which were virtual.

Figure 8: Comparison of rendering with different features. The scene
contains a real red and yellow cube, a virtual refractive sphere and a
virtual metal ring. (Top left) Rendering refraction and reflection using
1 ray per pixel and no caustic simulation at 27 fps. (Top right) Anti-
aliasing added using 25 rays per pixel - 7 fps. (Bottom left) Caustics
are enabled using 150K photons. Rendering speed is 3 fps. (Bot-
tom right) Depth of Field effect is enabled. Frame rate is 2.5 fps.
Differences in images can better be seen in closeup.

In the next stage of the user study we used sequences consisting
of five videos each. The same scene was shown in each clip but
in each successive video in a sequence a new realistic feature was
added. Figure 8 is an example of enabling different effects one after
another. In order to show that the evaluation results are independent
of the scene layout and scene content, two different scenes were
used. In the first scene a virtual refractive glass sphere on a real
table with real diffuse cubes was rendered. In a second scene a
virtual metal ring with diffuse real cubes was shown. Each video,
including the first general video, was played to users only once.

Two sequences of videos were shown to every user in order to avoid
the dependence of answers on order of effects and rendered scenes.
Each sequence introduced the effects in a different order. Therefore
the order was randomized for all participants in a standardized way.
In total four different sequences were created and two of them were
selected for every user. This selection made sequences randomized
to avoid the bias in results.

In the first sequence of videos the realistic effects were added
in the following order: no effect, refraction/reflection, anti-aliasing,
caustics, depth of field. The virtual refractive sphere was rendered
in this sequence.

In the second sequence the effects were added in a different or-
der: no effect, caustics, refraction/reflection, anti-aliasing, depth of
field. The virtual metal ring was rendered in this sequence.

In a third sequence the effects were added in the same order as
in sequence 1, however the metal ring scene was used. And finally
in the fourth sequence the effects were added in the same order as
in sequence 2 with a refractive glass sphere used.

Users were asked to compare each pair of successive videos in
the sequence. They had to answer the question: Which video in
the pair (previous, current) looks more realistic? Users evaluated
the increase of realism in successive videos by using a linear visual
analogue scale in range from -3 to 3. -3 means that the previous
video was much more realistic. 0 has the meaning of a similar, com-
parable amount of realism in both videos. And 3 means the current
video is much more realistic. The decision to evaluate the differ-
ence between two successive clips was made because we wanted
users to concentrate on desired rendering effect and to evaluate the
increase of realism when this effect is enabled.

5.2 Results

The participants of the user study were selected randomly. 43 users
participated in our evaluation. 12 of them were men and 31 were
women. 26% of the test subjects had previous knowledge in com-
puter graphics and 74% did not. The general video showing all
effects was shown to all participants. The first and second video
sequences were shown to 21 users; the third and fourth sequences
were shown to the other 22 users.

3,0

2,0

11 12

1,0
o 0,5
s 03
v
: = [
g 00 : : :
=
5 Refraction and Antialiasing Caustics DoF
g ;
Z Reflection
-1,0
o =146 o =137 o=1.36 o =144
-2,0

3,0

Figure 9: The influence of single realistic rendering effects on per-
ceived realism in AR videos. (o = std. dev.).

First we evaluated the increase of realism caused by enabling
certain effects. Figure 9 shows the results of pair-wise comparison
of all effects. The addition of each effect contributed positively to
the perception of realism in AR. We can see that the highest contri-
bution is caused by anti-aliasing. It reduces disturbing alias on the
edges of virtual objects, making them appear more natural. Realis-
tic refraction and reflection is also an important feature to enhance
realism. We can see that caustics are not so important for users,



B Spherescene Ring scene
3,0
20
14 1.3
1.0

10 T
@ o5 05 ag
2 0,3
. | ]
E’ 00 - T T T 1
5 Refraction and Antialiasing Caustics DoF
= Reflection
< a0

-2,0

-3,0

Figure 10: Difference in perceived realism with single realistic effects
using different virtual content.

but also contribute to increase the amount of realism in AR. How-
ever, the result on caustics could be influenced by the fact that in
the second sequence caustics were added to an object before reflec-
tion/refraction. This made caustics look unnatural because the re-
spective objects were rendered just semitransparently. In summary
our second hypothesis was confirmed because the results indicate
that all added rendering features increased the amount of realism
in AR. Influence of virtual content to realism perceived by users in
video sequences 1 and 3 can be seen in figure 10.

We were interested to see how users perceived realism of the
overall video. The results can be seen in figure 11. The average
of 0.8 indicates that the scene was perceived as realistic and the
result confirms our first hypothesis. However, there is room for im-
provement in future work. In addition we analyzed the perception
of realism separately for selected groups within our participants.
We analyzed the results depending on gender and computer graph-
ics experience. The results are shown in figure 11. Men with CG
knowledge report higher values of realism.

3,0
20
14
1,2
08

: ) l ) I ’
4
o
% 0,0 T T T T
o
. Overall With CG Without CG Male Female
; Knowledge Knowledge

-1,0

=151 o =1.18 g =1.59 o=1.21 o =1.56
-2,0
-3,0

Figure 11: Average results of perceived realism of the overall AR
video. (o = std. dev.).

Another result was more surprising. We asked users to judge
which objects in the overall video are real and which are virtual.
The intention of this question was to see if the visual quality and
coherence is good enough to make people believe that AR content
is real. One goal is to make virtual objects indistinguishable from
real ones. In average 40.1% of the virtual objects were mistakenly
marked as real ones. The most realistic appearance according to this

evaluation had the virtual metal ring reflecting the real environment
and casting caustics. 53.5% of users marked this virtual object as
a real one. It is important to say that in 36% of all cases users
mistakenly thought that real objects were virtual ones.

In summary the evaluation demonstrates that each developed
rendering effect has a positive impact to visual coherence in AR.
The results of enabling different effects can be seen in figure 8. In
the top left image of the figure, the rendering of specular refraction
and reflection is enabled. However in this image only 1 ray per pixel
was shot and we can observe aliasing artifacts. The top right image
shows how aliasing artifacts disappear when supersampling is en-
abled. In the bottom images caustics rendering was added. Note the
small caustic created under the glass sphere. In the lower left image
the real yellow cube is blurred by DoF of the real lens. Therefore
the virtual sphere is visually incoherent because it is sharp. The
DoF effect is enabled in the bottom right image.

The second part of our evaluation concerned rendering perfor-
mance. We measured the rendering speed of different effects and at
different sampling rates. As we can see in table 1 our system is ca-
pable to produce a high-quality result in interactive frame rates. The
table also shows the computation times for different steps of render-
ing: photon emitting, Kd-tree build, and ray-tracing with density
estimation. Texture copying to the GPU memory usually took 20
ms in our experiments. Our system is capable to preserve interactiv-
ity even with complex scenes like the glass happy Budha consisting
of 855K triangles. Increasing the sampling rate improves the qual-
ity of the produced result, however as we see in table 1 it decreases
rendering speed, thus offering a tradeoff between quality and speed.

6 CONCLUSION AND FUTURE WORK

In this paper we present a novel high-quality rendering and com-
positing system for augmented reality. Our system is able to render
various realistic effects by using ray-tracing at interactive or real-
time frame rates. A novelty of our work was achieved by using
interactive ray-tracing in AR on a single PC while simulating spec-
ular effects like refraction, reflection and caustics. Our method is
capable to produce believable interactive augmentations. Moreover
we designed and performed a user study confirming the positive im-
pact of realistic rendering on user’s perception of visual coherence.

There are several possible extensions of the proposed system
which can increase the amount of realism in AR. We plan to in-
corporate full global illumination into rendering in future work to
allow effects like color bleeding and diffuse indirect lighting to be
produced. Possible performance improvements can be achieved by
using a GPU implementation of Kd-tree construction [40] for pho-
ton mapping. Accurate camera tracking is an important part of an
AR system, because even little jitter in tracking data can be im-
mediately observed by users as unnatural and unstable behavior of
virtual objects. We plan to extend our system using a more stable
tracking solution like the ioTracker [25]. Automatic 3D reconstruc-
tion of the real scene would be of high benefit in our system. A
possible solution to this problem can be KinectFusion [14] which
can provide both 3D reconstruction of the real scene and a stable
tracking solution.

In our work we demonstrate the possibility of using high-quality
ray-tracing based rendering techniques in interactive AR and we
expect GPU ray-tracing to be the future of rendering in AR.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their valuable comments
and suggestions. We would like to thank to Iana Podkosova who
helped us with reformulation of some parts of the paper. This work
was supported in part by the PhD school of informatics at TU Vi-
enna.



Scene Triangle count | Emitted photons | Primary rays per pixel t, ty t. | fps, | fps,
Metal Ring 9K 280K 1 45ms | 196 ms 21 ms 4 20
280K 4 47 ms | 196 ms 94 ms 33 10

280K 9 47ms | 196 ms | 206 ms 2.7 5.7

No caustics 1 0 ms 0 ms 6 ms - 31

Glass Monkey 15K 100K 1 20 ms 31 ms 24 ms 11 20
M 1| 167ms | 619 ms 45 ms 1.6 17

M 4 | 167ms | 618ms | 138 ms 1.4 6

Glass Dragon 201K 240K 1 28 ms 47 ms 36 ms 10 17
240K 9 29 ms 48 ms | 269 ms 2.8 3.6

Glass Happy Budha 855K 240K 1 16 ms 17 ms 42 ms 7.5 14
240K 4 16 ms 17 ms | 165 ms 4.1 6.5

Table 1: Performance of our ray-tracing based rendering system

REFERENCES

[11 K. Agusanto, L. Li, Z. Chuangui, and N. W. Sing. Photorealistic
dering for augmented reality using environment illumination. In

. 1, is the duration of the photon shooting phase in ms, t; is the time for Kd-tree
building, and t,. is the time of ray-tracing from the camera including the density estimation on hitpoints. fps,. is the frame rate with photon map
rebuild enabled and fps,, is the frame rate with photon map rebuild disabled. All measurements were taken at a resolution of 720x576. A
GeForce 590 GTX graphics card was used to render all measured scenes.

ren-
Pro-

ceedings of the 2nd IEEE/ACM International Symposium on Mixed
and Augmented Reality, ISMAR 03, pages 208-218, Washington,

DC, USA, 2003. IEEE Computer Society.
[2]

[15]

R. L. Cook, T. Porter, and L. Carpenter. Distributed ray tracing. In
Proceedings of the 11th annual conference on Computer graphics and

[16]

interactive techniques, SIGGRAPH ’84, pages 137-145, New York,

NY, USA, 1984. ACM.

[3] P. Debevec.

Rendering synthetic objects into real scenes: bridg-

[17]

ing traditional and image-based graphics with global illumination and
high dynamic range photography. In Proceedings of the 25th annual
conference on Computer graphics and interactive techniques, SIG-

GRAPH 98, pages 189-198, New York, NY, USA, 1998. ACM.
[4]
Computer Graphics Forum, 28(4):1151-1159, 2009.
[5]

Graphics Interface 93, pages 254-262, Toronto, ON, Canada,
1993.
[6]

(18]

B. Fabianowski and J. Dingliana. Interactive global photon mapping.

A. Fournier, A. S. Gunawan, and C. Romanzin. Common illumina-
tion between real and computer generated scenes. In Proceedings of

(19]
May

J. Frahm, K. Koeser, D. Grest, and R. Koch. Markerless augmented

reality with light source estimation for direct illumination. In Visual

Media Production, 2005. CVMP 2005. The 2nd IEE European Con-

ference on, pages 211 — 220, nov. - 1 dec. 2005.
[7]
In GRAPP, pages 249-252, 2008.
[8]

beling techniques on modern architectures. In Proceedings of the

C. Grana, D. Borghesani, and R. Cucchiara. Connected component la-

(20]

T. Franke and Y. Jung. Real-time mixed reality with gpu techniques.

[21]
15th

International Conference on Image Analysis and Processing, ICIAP

’09, pages 816-824, Berlin, Heidelberg, 2009. Springer-Verlag.
[9]

T. Grosch. Differential photon mapping: Consistent augmentation of

[22]

photographs with correction of all light paths. In Eurographics 2005

Short Papers, Trinity College, Dublin, Ireland, 2005.
[10]

T. Grosch, T. Eble, and S. Mueller. Consistent interactive augmen-
tation of live camera images with correct near-field illumination. In

(23]

Proceedings of the 2007 ACM symposium on Virtual reality software
and technology, VRST 07, pages 125-132, New York, NY, USA,

2007. ACM.

[11] J. Giinther, I. Wald, and P. Slusallek. Realtime caustics using

dis- [24]

tributed photon mapping. In Rendering Techniques, pages 111-121,

June 2004.
Rendering).
S. Gupte. Real-time photon mapping on gpu. 2011.

R. Herzog, V. Havran, S. Kinuwaki, K. Myszkowski, and H.-P.

[12]
[13]

del. Global illumination using photon ray splatting. In D. Cohen-Or

(Proceedings of the 15th Eurographics Symposium on

[25]

Sei-
[26]

and P. Slavik, editors, Computer Graphics Forum (Proceedings of Eu-
rographics), volume 26(3), pages 503-513, Prague, Czech Republic,

2007. Blackwell.

[27]

[14] S.Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli,

J. Shotton, S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon.
Kinectfusion: real-time 3d reconstruction and interaction using a mov-
ing depth camera. In Proceedings of the 24th annual ACM symposium
on User interface software and technology, UIST 11, pages 559-568,
New York, NY, USA, 2011. ACM.

H. Jensen. Realistic Image Synthesis Using Photon Mapping. Ak
Peters Series. A K Peters, Limited, 2009.

P. Kén and H. Kaufmann. Physically-based depth of field in aug-
mented reality. In EG 2012, Cagliari, Italy, 2012. Eurographics Asso-
ciation.

K. Karsch, V. Hedau, D. Forsyth, and D. Hoiem. Rendering synthetic
objects into legacy photographs. In Proceedings of the 2011 SIG-
GRAPH Asia Conference, SA ’11, pages 157:1-157:12, New York,
NY, USA, 2011. ACM.

M. Knecht, C. Traxler, O. Mattausch, W. Purgathofer, and M. Wim-
mer. Differential instant radiosity for mixed reality. In Proceedings
of the 2010 IEEE International Symposium on Mixed and Augmented
Reality (ISMAR 2010), pages 99-107, Oct. 2010.

F. Lavignotte and M. Paulin. Scalable photon splatting for global illu-
mination. In Proceedings of the Ist international conference on Com-
puter graphics and interactive techniques in Australasia and South
East Asia, GRAPHITE ’03, pages 203—ff, New York, NY, USA, 2003.
ACM.

M. McGuire and D. Luebke. Hardware-accelerated global illumina-
tion by image space photon mapping. In Proceedings of the Confer-
ence on High Performance Graphics 2009, HPG 09, pages 77-89,
New York, NY, USA, 2009. ACM.

D. P. Mitchell. Consequences of stratified sampling in graphics. In
Proceedings of the 23rd annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’96, pages 277-280, New York,
NY, USA, 1996. ACM.

S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock,
D. Luebke, D. McAllister, M. McGuire, K. Morley, A. Robison, and
M. Stich. Optix: a general purpose ray tracing engine. ACM Trans.
Graph., 29:66:1-66:13, July 2010.

S. Pessoa, G. Moura, J. Lima, V. Teichrieb, and J. Kelner. Photoreal-
istic rendering for augmented reality: A global illumination and brdf
solution. In Virtual Reality Conference (VR), 2010 IEEE, pages 3 —10,
march 2010.

M. Pharr and G. Humphreys. Physically Based Rendering: From The-
ory to Implementation. Morgan Kaufmann. Elsevier Science, 2010.
T. Pintaric and H. Kaufmann. Affordable Infrared-Optical Pose Track-
ing for Virtual and Augmented Reality. In IEEE VR Workshop on
Trends and Issues in Tracking for Virtual Environments, pages 44-51,
2007.

S. Pirk. Gpu-based rendering of reflective and refractive objects in
augmented reality environments. Master’s thesis, University of Ap-
plied Sciences, Oldenburg, 2007.

A. Pomi and P. Slusallek. Interactive Ray Tracing for Virtual TV Stu-
dio Applications. Journal of Virtual Reality and Broadcasting, 2(1),



[28]

[29]

[30]

[31]

[32]
[33]

[34]

[35]
[36]

[37]

[38]

[39]

[40]

Dec. 2005.

T. J. Purcell, C. Donner, M. Cammarano, H. W. Jensen, and P. Han-
rahan. Photon mapping on programmable graphics hardware. In Pro-
ceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware, HWWS ’03, pages 41-50, Aire-la-Ville, Switzer-
land, Switzerland, 2003. Eurographics Association.

R. Ramamoorthi and P. Hanrahan. An efficient representation for irra-
diance environment maps. In Proceedings of the 28th annual confer-
ence on Computer graphics and interactive techniques, SIGGRAPH
’01, pages 497-500, New York, NY, USA, 2001. ACM.

T. Ritschel, T. Grosch, M. H. Kim, H.-P. Seidel, C. Dachsbacher, and
J. Kautz. Imperfect shadow maps for efficient computation of indirect
illumination. In ACM SIGGRAPH Asia 2008 papers, SIGGRAPH
Asia ’08, pages 129:1-129:8, New York, NY, USA, 2008. ACM.

F. Scheer, O. Abert, and S. Miiller. Towards using realistic ray tracing
in augmented reality applications with natural lighting. GI Workshop
ARVR 07, 2007.

C. Schlick. An inexpensive brdf model for physically-based rendering.
Computer Graphics Forum, 13:233-246, 1994.

B. W. Silverman. Density estimation for statistics and data analysis.
Chapmann and Hall, New York, 1986.

B. Spencer and M. W. Jones. Hierarchical photon mapping. IEEE
Transactions on Visualization and Computer Graphics, 15(1):49-61,
Jan-Feb 2009.

B. Spencer and M. W. Jones. Into the blue: Better caustics through
photon relaxation. Comput. Graph. Forum, 28(2):319-328, 2009.

F. Suykens and Y. D. Willems. Adaptive Filtering for Progressive
Monte Carlo Image Rendering. In WSCG, 2000.

L. Szirmay-Kalos, L. Szécsi, and M. Sbert. GPU-Based Techniques
for Global Illumination Effects. Synthesis Lectures on Computer
Graphics and Animation. Morgan & Claypool Publishers, 2008.

D. Wagner and D. Schmalstieg. ARToolKitPlus for Pose Tracking on
Mobile Devices. Technical report, Institute for Computer Graphics
and Vision, Graz University of Technology, Feb. 2007.

R. Wang, R. Wang, K. Zhou, M. Pan, and H. Bao. An efficient
gpu-based approach for interactive global illumination. In ACM SIG-
GRAPH 2009 papers, SIGGRAPH °09, pages 91:1-91:8, New York,
NY, USA, 2009. ACM.

K. Zhou, Q. Hou, R. Wang, and B. Guo. Real-time kd-tree construc-
tion on graphics hardware. In ACM SIGGRAPH Asia 2008 papers,
SIGGRAPH Asia ’08, pages 126:1-126:11, New York, NY, USA,
2008. ACM.



